Performance-Driven Composite Prefetching with Bandits

Charles Block
coblock2@illinois.edu
University of Illinois
Urbana, Illinois, USA

Gerasimos Gerogiannis
gg24@illinois.edu
University of Illinois
Urbana, Illinois, USA

Abstract

Data prefetching is a complex problem. Its complexity has spurred
research advancements for over half a century. Our submission
to DPC4 is grounded on two observations. First, we observe that
prefetchers are typically designed to optimize different low-level
metrics such as timeliness, accuracy, and coverage. However, the
correlation between those low-level metrics and the actual perfor-
mance impact is complex and many times fluctuates depending on
the application and system status. Second, we observe that industry
often integrates ensembles of smaller prefetchers instead of large
monoliths in the cache hierarchy of real products.

Motivated by those observations, we (1) split the available com-
petition storage budget across different sub-prefetchers at differ-
ent cache levels, and we (2) use performance-driven reinforcement-
learning (RL) agents to manage and coordinate the activity of our
composite prefetchers. Our RL agents are based on the Multi-Armed
Bandit (MAB) model, and instead of optimizing for one or more
low-level metrics, they are configured to directly maximize per-
formance. Further, to improve the fairness of the prefetchers in
multicore configurations, we apply a version of the Micro-MAMA
arbitrator, which also relies on Multi-Armed Bandit forms of Rein-
forcement Learning. Compared to the original MAB and pMama
works, we use a wider selection of lightweight prefetchers in our
RL-managed ensemble at the L2, combined with Berti at the L1.

In this submission, we discuss the ensemble of prefetchers used
in our design, as well as the coordination mechanisms used between
them. Our Bandit-based composite prefetcher achieves strong single-
core performance in the two system configurations evaluated in
this competition, with geomean speedups of 2.7% and 1.2% over the
baseline system in the Full- and Limited-Bandwidth cases, respec-
tively. We conclude by discussing learnings we acquired during the
design and tuning process that we believe can prove useful for the
design space exploration and evaluation of future prefetchers.

1 Introduction

Over the past few decades, data-driven machine-learning (ML) al-
gorithms have become widespread for a variety of modern applica-
tions. Importantly, such algorithms are also gaining momentum in
computer architecture, with applications in branch prediction [19],
prefetching [2, 5, 16], and more [4, 15]. Many works have used a
particular subclass of ML called Reinforcement Learning (RL) to op-
timize the system’s behavior in real time [2, 5, 7, 13]. A significant
advantage of RL approaches is their ability to maximize a variety
of high-level metrics such as the overall performance [2, 3, 5].

Pedro Palacios Almendros
pedro5@illinois.edu
University of Illinois
Urbana, Illinois, USA

Abraham Farrell
af28@illinois.edu
University of Illinois
Urbana, Illinois, USA

Josep Torrellas
torrella@illinois.edu
University of Illinois
Urbana, Illinois, USA

Many of the state-of-the-art prefetchers today such as Berti [11],
are designed to optimize performance indirectly by targeting lower-
level metrics such as accuracy, timeliness, and coverage. However,
the relationship between such lower-level prefetch metrics and the
main optimization target, which is the system’s performance, is
complex and non-linear. To make matters worse, this relationship
often changes depending on the application and system state. For
example, an increase in coverage from 85% to 90% can prove more
detrimental for performance than an increase from 45% to 50%.
Further, a slight increase in accuracy can be more profitable than a
larger increase in coverage in a scenario where the main memory
bandwidth is heavily utilized.

Alternatively, systems can use higher-level performance-driven
action selection. RL agents that utilize the system’s performance
as the learning reward can make data-driven decisions that di-
rectly maximize performance. Further, recent core designs such
as Intel Atom [8] employ an ensemble of simple prefetchers with
runtime high-level configurability, instead of employing a large
monolithic prefetcher. We believe that using simple RL agents to
make performance-driven decisions about the behavior of these
composite prefetchers is low-hanging fruit.

In this DPC4 submission, we present such an RL-driven com-
posite prefetcher. Our RL control agent is based on the lightweight
Micro-Armed Bandit (Bandit) [5], and instead of optimizing for one
or more low-level metrics, it is configured to directly maximize
performance. Further, to improve the fairness of our composite
prefetchers in multicore configurations, we apply a version of the
Micro-MAMA arbitrator [3], which similar to Bandit, relies on the
Multi-Armed Bandit [9] Reinforcement Learning algorithms. In
comparison to [5] and [3], we use more advanced (but still light-
weight) sub-prefetchers for our DPC4 composite prefetcher.

In Section 2 we provide background on the Micro-Armed Ban-
dit [5] and Micro-MAMA [3] works, and we analyze how we mod-
ified those designs for our submission. In Section 3, we evaluate
our proposal. Finally, in Section 4 we discuss learnings we acquired
while preparing our submission for DPC4.

2 System Components

In this section, we provide a brief overview of Micro-Armed Ban-
dit [5] and pMAaMA [3], the two designs central to our submission.

2.1 Micro-Armed Bandit

2.1.1 Multi-Armed Bandit Algorithms. In Multi-Armed Bandit (MAB)
algorithms, an arm refers to a specific action available to the MAB

DPC4, January 2026, Sydney, Australia

Initial Round Robin Phase Main Phase
bandit step
—
"I a /7'1 a ,’7;1 as A arm ,/‘I .-
l
* = v = v = v | am= v
~am=a = ~arm = a, = ~arm = a. - S =
1 = Iyep 2 Iy = Istep 3 I3 = Istep| nextArm Tarm = updRew
m =1 =1 ny =1 Ngrm = updSels

Figure 1: Overview of a MAB algorithm (from [6]).

RL agent, while a bandit step is defined as the time duration for
which the agent is idle waiting to observe the outcome of its previ-
ous arm selection. rg;., is the reward received at the end of a bandit
step. For every arm i, two variables are needed: the average reward
r; that previous selections of this arm have yielded, and the number
of times n; that this arm has been selected in the past.

Figure 1 provides a general overview of a MAB algorithm. It be-
gins with an initial round robin phase, during which all the arms are
tried once. For each arm i, r; is set to the g, received during that
arm’s step, and n; is set to 1. Then, the main phase of the algorithm
begins, which lasts for as long as the agent keeps interacting with
the environment. It consists of three basic functionalities, which
depend on the specific MAB algorithm used. Those are: nextArm(),
which selects the next arm to be tried; updSels(arm), which updates
the number of selections n; for the currently selected arm i and po-
tentially other arms; and updRew(rs;ep), which updates the reward
r; for the currently selected arm i after the bandit step is over and
the 7sep has been collected.

In the context of our work, different arms represent different con-
figurations of our composite prefetcher (e.g. different sub-prefetchers
turned on or off, and with different degrees). Further, we select
the arm to try next using the Discounted Upper Confidence Bound
(DUCB) algorithm (see [5]), which implements an intelligent arm
exploration that accounts for both past rewards and selection fre-
quencies of different arms. To adapt to dynamic scenarios, the
DUCB algorithm progressively forgets past rewards.

nTable

rTable

| P |

ON/OFF degree degree)

new arm
current

max

(b) Communicate Arm Selection

nTable rTable

Arithmetic Unit

bandit siep Arithmetic Unit

duration

(c) Update Selections (d) Update Reward

Figure 2: Micro-Armed Bandit microarchitecture (from [6]).

2.1.2 Bandit Agent. To coordinate our sub-prefetchers, we use the
Bandit hardware agent as proposed in [5]. Bandit has two tables,
an arithmetic unit, and some control logic. The two tables are
the nTable and the rTable, and each has as many entries as the
number of arms. For each arm i, the nTable contains the number of
times that i has been selected so far (n;), while the rTable contains
the current value of its reward (r;). The arithmetic unit executes
the arithmetic operations in the nextArm, updSels, and updRew
functions in hardware.

Figure 2(a) shows the implementation of nextArm. The hardware
reads the nTable and rTable for all the arms, calculates the corre-
sponding potentials, and picks one arm as the new arm. Then, in
Figure 2(b), Bandit control logic communicates the arm selection
to the controlled entity—in the figure, the L2 data prefetcher. In the
background, Bandit updates the nTable (Figure 2(c)) according to
the logic of function updSels. Once the bandit step is over, the Ban-
dit arithmetic unit receives the appropriate hardware performance
counters, computes the step’s reward (rs;¢p), and accumulates it into
the rTable entry of the corresponding arm (Figure 2(d)). The figure
assumes that the reward is the core’s average IPC. This process
repeats continuously.

2.2 Micro-MAMA

In multicore systems, each core and its associated prefetchers com-
pete for resources such as memory bandwidth. As discussed in [3],
this competition influences the learning process of RL prefetchers
like Bandit that aim to maximize their own core’s IPC, and leads to
a reduction in their performance. Fundamentally, this issue stems
from individual RL agents prioritizing their own performance over
the rest of the system’s. To alleviate this issue, for our submis-
sion we augment our local Bandit prefetching agents with a global
uMamA coordinator, as proposed in [3].

A A A A
v v v v
L2/ L2/ L2/ L2/
Bandit Bandit Bandit Bandit
Agent Agent Agent Agent

S T R N T
!

uMama Unit

Figure 3: Local agents communicate with a pMama Unit.

2.2.1 puMama System. To solve the problem of conflicting interests,
one cannot simply measure the total IPC and provide a single reward
to all of the RL agents. Such an approach would result in poor credit
assignment for good or bad actions taken by the individual agents.
Instead, pMAMA takes a balanced approach, utilizing both greedy
local agents and system-level action tracking. Inspired by prior
theoretical work [12], locally-greedy Bandit agents in each private
prefetcher explore promising actions, while a system-level agent
monitors and overrides these agents to dictate system policy when
it believes this will improve performance. In most cases, these local
agents still use their local core’s IPC as reward, whereas the system-
level pMAMA supervisor is rewarded with an estimation of the
whole system’s performance.

Figure 3, shows distributed per-core Bandit agents and a global
uMamA Unit. The latter tracks high-performing “joint actions,”
formed by the combination of individual actions. Figure 4 shows
the structure of the pMama Unit. The high-performing joint actions
identified by the uMaMA Unit, together with their resulting IPC
values are stored in a highly-associative structure called the joint
Action Value (JAV) cache. The pMama Unit also contains another
RL agent, the uMamA Arbiter, which determines, at each timestep,
whether to allow the local Bandit agents to operate independently
or to force on them the best-known joint action from its JAV cache.

Performance-Driven Composite Prefetching with Bandits

The pMAMA Arbiter is itself a Bandit agent that uses the typical
two tables (rTable and nTable as shown in Figure 4) to make its
decision at every time step.

Arbit rTable

local
"T"T"t" > pMama
Jorm Atbiter
Arbit nTable
local
el JAV Cache
joint
Chosen
Use Actions from Action
Local Agents

Figure 4: Structure of the pMama Unit. The Arbiter chooses
between forcing a joint action taken from the JAV cache or
letting the local agents use their actions on their own.

In this system, the local agents are primarily intended to support
exploration of new joint actions, while the pMama Unit records
(and sometimes initiates) high-performing combinations of individ-
ual actions. Rather than randomly sampling or iterating over the
very large joint action space, local agents help focus the system’s
exploration on joint actions that have the potential to improve their
core’s performance.

2.2.2 The System-Level Reward. To use RL to optimize for system-
level performance, one must be able to quantify that performance.
uMama [3] was originally designed with the Weighted Speedup and
Harmonic Speedup metrics in mind, where each core’s speedup over
a simple no-prefetcher system is arithmetically or harmonically
averaged, respectively. However, for DPC4, a different variant of
the harmonic mean speedup is being used, which measures each
core’s performance relative to a Berti [14]+Pythia [2] configuration.
Although this may appear to be a similar metric, in practice it is
much more difficult to estimate a given core’s speedup over this
new baseline than it is to estimate its speedup over a no-prefetcher
system. To avoid the noise that these inaccurate estimations may
cause, we choose to instead formulate pMaMA’s reward as the
geometric mean of the core IPCs. Although this is not entirely
faithful to the metric that we wish to optimize, we observe that it
correlates fairly well. Further, instead of only supplying the global
reward to a small number of “low-importance” cores (see [3]), we
find that it is beneficial to supply every agent with a reward derived
partly from the whole system’s performance and partly from its
own core’s performance; in our case, we use a 15%/85% split.

2.2.3 Communication and Latency. When coordinating several
agents, it is beneficial to have a common timestep. To accomplish
this, when a local agent reaches a threshold number of L2 demand
accesses, it sends a message to UMAMA to mark itself as ready to
advance. Once the majority of local agents do so, uMama broadcasts
instructions to begin the next timestep. pMaMa hides most of this
communication and the exchange of rewards between Bandits and
the pMAaMA Unit by planning one timestep ahead (see [3]).

2.3 Composite Prefetcher

We use Bandit and pMAMA to control a composite prefetcher at the
L2. Our composite prefetcher includes the Next Line, Stride, and
Stream prefetchers, similar to the original Bandit and pMama works.

DPC4, January 2026, Sydney, Australia

Table 1: The components making up our system.

Level | Component | Controlled by | Storage Total
Bandit/yMama? | (KiB)
L1D Berti Pref. No 29.45 29.45KiB
L2 Next Line Yes 0.00
Stride Yes 12.02
Stream Yes 5.63
SMS [17] Yes 66.38
BOP [10] Yes 6.23
Bloom Filter 0.24
Bandit Agent 0.32
pMama Agent 0.07 90.89KiB
LLC Nothing 0KiB

However, we found that performance improved if we utilized the
extra competition storage budget to also incorporate the SMS [17]
and BOP [10] prefetchers in our ensemble. To prevent multiple
prefetchers from issuing duplicate prefetches, we also use a Bloom
filter to track the most recent accesses to the L2. At the L1, similar
to the baseline, we use Berti, which operates independently and is
configured as in [14]. We do not include any prefetcher at the LLC.

The storage requirements of our system are shown in Table 1.
The local Bandits each maintain two tables to track the rewards
of each arm, which are stored as double-precision floats, along
with a few registers for tracking normalization factors and buffer-
ing communication with the central uMama agent. We utilize two
capacity-50 bloom filters in a ping-pong fashion to reduce the num-
ber of redundant prefetches sent to the L2 cache; a 4-way, 128-set
ip-stride prefetcher; a stream prefetcher with 256 trackers; and the
SMS [17] and BOP [10] prefetchers. The central pMAMA unit only
requires 37 bytes for the JAV cache, plus another 32 for its arbiter.

Table 2 shows the different arms (i.e. L2 sub-prefetcher config-
urations) that our Bandits can choose from. As discussed, our L2
Bandits are controlled by uMaMma. The Bandit/uMama hyperparam-
eters used in our design (Table 3) are similar to [3].

Table 2: L2 Bandit arms used in our experiments. Each arm
represents a configuration of the L2 prefetchers. All configu-
rations use Berti at the L1 and no LLC prefetcher. A degree
of 0 deactivates the Stride and Stream sub-prefetchers.

Arm ID 0(1|2|3]|4]|5 6 7 8
NextLineOn? || X | X | X |/ | X | X | X | X
Stride Degree || 0 |0 |0 | 0|3 0|3 | 5] 5
Stream Degree || 0 | 3 | 5| 6 | 7 | 15| 15 | 20 | 20
SMS On? X|X|X| X | X X | X|X|V
BOP On? X|X|X| X | X| X | X | X]| X
Arm ID 9 (10 (11 (12 |13 |14 | 15| 16 | 17
NextLineOn? || X | X | X |V | X | X | X | X | X
Stride Degree || 0 | 0 | O | O | 3 | 0 | 3 | 5|5
Stream Degree || 0 | 3 | 5 | 6 | 7 | 15| 15| 20 | 20
SMS On? X| X | X | X | X | X|X|X]|V
BOP On? AR AR AR AR AT aranaxis

DPC4, January 2026, Sydney, Australia

Table 3: The hyperparameters used for the learning process
in this work. See [3, 5] for more details.

l Component [Parameters ‘
Local Agents ¢ =0.01, y = 0.9995, step = 800 L2 accesses
UMAMA Arbiter | ¢ = 0.1,y =0.995, Tyrpir =5
uMama JAV 2 entries, y = 0.999

3 Evaluation
3.1 Single-Core Evaluation

We evaluate our prefetcher ensemble with the 133 traces released by
the competition ahead of the submission deadline, running each for
50M warmup instructions followed by 200M measured instructions.
The traces come from four sources: SPEC, graph problems, AI/ML,
and cloud workloads from Google. We use the FullBW and LimitBW
system configurations specified by the competition. Figure 5 shows
the results: By replacing Pythia in the L2 with this ensemble of
prefetchers, we see significant speedup in three out of the four
workload categories, totaling 2.67% and 1.16% in the FullBW and
LimitBW configurations, or 3.01% and 1.33%, respectively, if the
categories are given equal weighting.

10.7%

[fulBW 71 limitBW

Speedup over Baseline

spec ai/ml graph google

category trace
geomean geomean

Figure 5: With a single core, our proposal outperforms the
baseline system in three out of the four workload categories.

The AI/ML category appears to benefit greatly from aggressive
streaming in the FullBW configuration (+10.69%), although it be-
comes entirely bandwidth bound in the LimitBW configuration.
SPEC and the Graph workloads both see significant speedups as
well, and actually observe more speedup relative to the Baseline
in LimitBW than in FullBW, due to Bandit’s ability to adapt its
aggressiveness to the system. Although the Google workloads ob-
serve a slowdown relative to the baseline, we expect that this is
not an issue with the Bandit learning process, but rather with the
particular arms available to it. As we will discuss in Section 4, the
art of selecting arms remains challenging.

Most of the arms listed in Table 2 see regular use by our agents,
but some are certainly more popular than others. In particular, we
find that in the FullBW configuration, Bandit prefers Arms 17, 16,
& 7 (being used about 15.1%, 9.5%, & 9.1% of the time, respectively).
These all pair a very aggressive streamer with at least one other L2
sub-prefetcher. However, in the LimitBW configuration, we find
that Bandit learns to use lower-aggressiveness arms, preferring
Arms 0, 1, & 4 (25.4%, 10.3%, & 10.0%, respectively).

Notably, our design does not make use of an LLC prefetcher.
This decision was made partly due to time constraints, since adding
another prefetcher (or multiple) for a Bandit agent to control would
have required a more in-depth design space exploration. However,
although time and resources constrained our ability to evaluate an

Table 4: Static prefetchers in the LLC degrade single core
performance, compared to operating without one.

LLC Prefetcher | FullBW | LimitBW | Geomean
Speedup | Speedup
Next-Line +0.0% -0.3% -0.1%
Berti -1.6% -2.2% -1.9%
Pythia -1.3% -3.8% -2.6%
SMS -1.1% -4.3% -2.7%

LLC prefetching ensemble, Table 4 shows the single-core results of
placing static prefetchers at the LLC, along with our L2 ensemble.
In all cases, we observe a performance degradation, ranging from
-0.1% with a next-line prefetcher to -2.7% with an SMS prefetcher.

3.2 Multi-Core Evaluation

3.9% =
o
%1.04 8 1.00
L € o E
a =)
°5 1024 L o
a8 g -1.9
E 52 098
[oe] c=
% 100/
2 £&
2 o 0.96
(U]
0.98 - _4
>0 Q
& &§
S
SSP
SE
N

(a) ptMamA performance vs unco-

ordinated Bandits. (b) Bandit with and

without pMama.

Figure 6: uyMama provides better multicore performance than
uncoordinated Bandits.

To evaluate the multicore performance, we follow the competi-
tion’s method of randomly generating 50 workload mixes in each
category, along with 50 mixes consisting of traces from all cate-
gories. We run each of these mixes until all cores have executed
250M instructions, and we report results for the first 250M.

As can be seen from Figure 6a, the pMAMA supervisor improves
the performance of the system over that of uncoordinated Bandit
agents in every category, with the greatest improvement being
found in the AI/ML workloads. On average, this system outper-
forms an uncoordinated Bandit system by 1.5% when using the
competition metric.

Despite this, as shown in Figure 6b, our ensemble underperforms
the baseline system in the multicore case by 1.9% on average. Al-
though our system still outperforms in the AI/ML workloads, the
others fall short. We speculate that this is due to a sub-optimal se-
lection of arms and hyperparameters for the multicore prefetching
problem. We discuss this issue more in Section 4, but in short, time
constraints and long simulations created difficulty in tuning our
system for multicore performance before the competition deadline.
A selection of more low-to-moderate aggressiveness arms, alternate
pMama hyperparameters, and a reward function for pMama that
more closely matched the evaluation criteria may have provided

Performance-Driven Composite Prefetching with Bandits

better performance. Nonetheless, the improvement provided by
the pMAaMmA system over uncoordinated Bandits, even without a
full parameter exploration, demonstrates the importance of such a
coordination system when using performance-driven agents.

4 Conclusion and Learnings

At the heart of our DPC4 submission lies a composite L2 prefetcher
that offers high-level configurability. The composite prefetcher is
controlled by a reinforcement learning based system that includes a
private Bandit agent at each core’s L2 and a global uMama coordina-
tor. The Bandit and pMAMA agents make high-level configuration
decisions with the goal of directly optimizing performance. We
now discuss some learnings we acquired while preparing our DPC4
submission, that we believe can prove useful for future work.

1. The initial static selection of Bandit arms is crucial for the
final performance of the system. However, the problem of
design space exploration remains difficult. A Bandit-based sys-
tem can only be as good as the sum of its individual arms — formed
in our case by the sub-prefetchers of our composite L2 prefetcher.
There is a very rich space in different sub-prefetcher configurations
that one may choose from. Such configurations may not only differ
in the activated prefetcher types and degrees but also on aspects
such as cross-page prefetching [18], L1 prefetching on virtual or
physical addresses, and more. At the same time, allowing for a
large number of arms that the Bandit can choose from at runtime
may decrease performance due to increased exploration cost. While
preparing our submission, we attempted to use autotuning tools [1]
with techniques such as evolutionary algorithms and gaussian opti-
mization to programmatically derive a good set of arms. However,
both of those methods did not produce good results, due to the
huge design space and long simulation times. Instead, we manually
picked the set of arms in Table 2, with humans always in the loop.
Overall, we believe that Bandit-based solutions still have a large
performance headroom, and we hope that combining microarchitec-
tural insights with autotuning methods such as gaussian optimization
to determine the action space may prove fruitful in the future.

2. The performance of Bandit and pMama is sensitive to their
hyperparameters, and the optimal hyperparameters are sen-
sitive to the underlying system configuration. Organizing fair
head-to-head evaluations in a competition format is difficult, since
simulation infrastructure must be bug-free and evaluation method-
ology must be carefully constructed. In the case of DPC4, this
resulted in various updates to infrastructure and rules throughout
the submission period to improve the quality of the competition.
We found that after each of these changes, we would often find
that a previously high-performing set of arms no longer worked
as well as before, or that hyperparameters needed to be re-tuned.
Although we found that autotuning tools tended to work better for
numerical hyperparameters than arm selection, the long simulation
times still restricted our design space exploration. In fact, due to
the long-running nature of multicore simulations and some late
competition changes, we were only able to test a handful of possi-
ble configurations of pMAMA before the submission deadline, and
only with much-reduced instruction counts. This was one reason
for the decision to use a simple geomean-based reward instead of
attempting to accurately estimate the true speedup-over-baseline

DPC4, January 2026, Sydney, Australia

at runtime. We believe that the high sensitivity of performance to
hyperparameters is a weakness of Bandit-based solutions that can
motivate more research in the future.

3. Composite prefetchers as baselines in prefetching papers.
As discussed in Section 1, industry is moving towards composite
prefetchers. We believe that such systems, augmented with smart,
potentially performance-driven coordinators, should become base-
lines for comparison even for standalone (not composite) prefetcher
designs. Although we tried different prefetchers in our L2 ensemble
of Table 1, we found that only SMS and BOP were able to raise per-
formance beyond the ensembles used in the original Bandit/uMama
works. To that end, we believe it is interesting to test how the perfor-
mance of new prefetching proposals compares against iso-storage
composite prefetchers, or whether such new proposals bring value
when used as components in composite prefetchers.

Acknowledgments

This work was supported by NSF with grants CCF 2107470, CCF
2316233, and Graduate Research Fellowship DGE 21-46756; by ACE,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA; and by the IBM-
Illinois Discovery Accelerator Institute. This work made use of
computing resources of Illinois Computes, which is supported by
the University of llinois Urbana-Champaign (UIUC); and the Illinois
Campus Cluster, operated in conjunction with NCSA.

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

[2] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-

vas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware

Prefetching Framework Using Online Reinforcement Learning. In MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual

Event, Greece) (MICRO °21). Association for Computing Machinery, New York,

NY, USA, 1121-1137. do0i:10.1145/3466752.3480114

Charles Block, Gerasimos Gerogiannis, and Josep Torrellas. 2025. Micro-MAMA:

Multi-Agent Reinforcement Learning for Multicore Prefetching. In Proceedings of

the 58th IEEE/ACM International Symposium on Microarchitecture (MICRO °25).

Association for Computing Machinery, New York, NY, USA, 884-898. doi:10.

1145/3725843.3756096

Abdoulaye Gamatié, Xin An, Ying Zhang, An Kang, and Gilles Sassatelli.

2019. Empirical model-based performance prediction for application mapping

on multicore architectures. Journal of Systems Architecture 98 (2019), 1-16.

doi:10.1016/j.sysarc.2019.06.001

Gerasimos Gerogiannis and Josep Torrellas. 2023. Micro-Armed Bandit: Light-

weight & Reusable Reinforcement Learning for Microarchitecture Decision-

Making. In Proceedings of the 56th Annual IEEE/ACM International Symposium on

Microarchitecture (Toronto, ON, Canada) (MICRO °23). Association for Computing

Machinery, New York, NY, USA, 698-713. doi:10.1145/3613424.3623780

[6] Gerasimos Gerogiannis and Josep Torrellas. 2024. Practical online reinforcement
learning for microprocessors with micro-armed bandit. IEEE Micro 44, 4 (2024),
80-87.

[7] Yan Huang and Zhanyang Wang. 2024. RLOP: A Framework Design for Offset
Prefetching Combined with Reinforcement Learning. In Proceedings of the 13th
International Conference on Computer Engineering and Networks, Yonghong Zhang,
Lianyong Qi, Qi Liu, Guanggiang Yin, and Xiaodong Liu (Eds.). Springer Nature
Singapore, Singapore, 90-99.

[8] Intel Corporation. 2023. Hardware Prefetch Controls for Intel® Atom® Cores.
Whitepaper 357930-001US. Intel Corporation. https://www.intel.com/content/
www/us/en/content-details/795247/hardwareprefetch-controls- for-intel-
atom-cores.html

[9] Tor Lattimore and Csaba Szepesvari. 2020. Bandit Algorithms. Cambridge Uni-

versity Press.

Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE, 469-480.

—_
A

[4

[5

[10

https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3725843.3756096
https://doi.org/10.1145/3725843.3756096
https://doi.org/10.1016/j.sysarc.2019.06.001
https://doi.org/10.1145/3613424.3623780
https://www.intel.com/content/www/us/en/content-details/795247/hardwareprefetch-controls-for-intel-atom-cores.html
https://www.intel.com/content/www/us/en/content-details/795247/hardwareprefetch-controls-for-intel-atom-cores.html
https://www.intel.com/content/www/us/en/content-details/795247/hardwareprefetch-controls-for-intel-atom-cores.html

DPC4, January 2026, Sydney, Australia

[11] Agustin Navarro-Torres, Biswabandan Panda, Jesus Alastruey-Benedé, Pablo [16] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-

Ibafiez, Victor Vifials-Yufera, and Alberto Ros. 2022. Berti: an accurate local-delta
data prefetcher. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 975-991.

Santiago Ontafién. 2017. Combinatorial multi-armed bandits for real-time strat-
egy games. J. Artif. Int. Res. 58, 1 (Jan. 2017), 665-702.

Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality
and context-based prefetching using reinforcement learning. SIGARCH Comput.
Archit. News 43, 3S (jun 2015), 285-297. do0i:10.1145/2872887.2749473

Alberto Ros. 2019. Berti: A per-page best-request-time delta prefetcher. The 3rd
Data Prefetching Championship (2019).

Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a Cost-
Effective Cache Replacement Policy using Machine Learning. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). 291-303.
doi:10.1109/HPCA51647.2021.00033

ganathan, and Calvin Lin. 2021. A hierarchical neural model of data prefetch-
ing. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS °21). Association for Computing Machinery, New York, NY, USA, 861-873.
doi:10.1145/3445814.3446752

Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News 34, 2 (2006), 252-263.

Georgios Vavouliotis, Marti Torrents, Boris Grot, Kleovoulos Kalaitzidis, Leeor
Peled, and Marc Casas. 2025. To cross, or not to cross pages for prefetching?. In
2025 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 188-203.

Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale N. Patt. 2020. Branch-
Net: A Convolutional Neural Network to Predict Hard-To-Predict Branches. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 118-130. do0i:10.1109/MICR0O50266.2020.00022

https://doi.org/10.1145/2872887.2749473
https://doi.org/10.1109/HPCA51647.2021.00033
https://doi.org/10.1145/3445814.3446752
https://doi.org/10.1109/MICRO50266.2020.00022

	Abstract
	1 Introduction
	2 System Components
	2.1 Micro-Armed Bandit
	2.2 Micro-MAMA
	2.3 Composite Prefetcher

	3 Evaluation
	3.1 Single-Core Evaluation
	3.2 Multi-Core Evaluation

	4 Conclusion and Learnings
	Acknowledgments
	References

