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Abstract

Online reinforcement learning (RL) holds promise for microarchi-
tectural techniques like prefetching. Its ability to adapt to changing
and previously-unseen scenarios makes it a versatile technique.
However, when multiple RL-operated components compete for
shared resources in multicore systems, they can often converge to
sub-optimal policies due to conflicting incentives.

In this work, we identify key challenges that arise when scaling
RL-based prefetchers to multi-core environments, and relate these
to known problems from Multi-Agent Reinforcement Learning
(MARL). In particular, we find that recent work using multi-armed
bandit algorithms for prefetching can lead to inefficient systems
when memory bandwidth is limited, as each agent attempts to claim
a disproportionate share of the system’s bandwidth.

To solve this problem, we present µMama, a light-weight su-
pervisor of distributed multi-armed bandit agents, which learns
performant joint-policies. In µMama, distributed local agents nar-
row the global joint-action search space, while a central agent
with a global perspective learns system-wide policies. Addition-
ally, µMama provides key local agents with a system perspective,
encouraging them to avoid actions that would harm the others.

µMama exhibits high adaptability, which we show by evaluating
it using multiple measures of performance. In our evaluation of an
8-core system, the policies learned by µMama outperform those of
independently-operating agents by an average of 2.1% when opti-
mizing for throughput, and by an average of 10.4% when optimizing
for fairness. We also show that µMama performs better in systems
that are more bandwidth constrained, as well as when profiles of
the workloads are provided.
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1 Introduction

Recently, machine learning (ML) methods for classic CPU microar-
chitecture techniques have been popular topics of research, as they
promise new data-driven approaches to branch prediction [27, 59],
data prefetching [11, 47], and more [10, 16, 45, 46]. Of particular
interest are the works that use online reinforcement learning (RL)
to learn solutions at runtime for problems ranging from prefetch-
ing [5, 17, 19, 35, 42] and cache replacement [35, 61] to branch
prediction [62] and SMT thread management [17, 56]. Online RL
promises to learn high-performing control policies for changing
or unseen scenarios in real time. By learning from previous experi-
ences, these algorithms are able to direct the actions of traditional
microarchitectural elements that may otherwise rely solely on brit-
tle hand-crafted heuristics.

Prior RL works have primarily considered systems of a single
learner, such as a prefetcher for a single private cache [5, 17]. Yet
multicore systems, in which several such learners may be located,
introduce additional complexities. For example, an RL prefetcher
may opt for an aggressive prefetch policy to increase its own reward,
but this may harm the performance of other cores due to higher
memory contention. Contention caused by prefetchers is a known
problem [12, 13], but RL-based prefetchers often have conflicting
incentives, encouraging them to increase memory contention, to
the detriment of the whole system. Such behavior is well-known in
the fields of Multi-Agent Reinforcement Learning (MARL) [2] and
Game Theory [40].

To address this problem, we propose a lightweight system for
coordinating a set of distributed RL-operated prefetchers in mul-
ticores. We start by identifying issues in the Micro-Armed Ban-
dit prefetcher [17] that exacerbate competition between agents
when operating in a multicore system. Based on the issues we
find and prior theoretical work [39], we propose using an intelli-
gent RL supervisor to coordinate distributed Micro-Armed Bandit
agents, utilizing their local insights, while prioritizing actions that
maximize the system’s performance. We call this coordinator of
microarchitectural Multi-Agent Multi-Armed bandits µMama.

Our simulations show the effectiveness of µMama. In eight-
core µMama increases the system throughput by an average of
2.1% over uncoordinated Micro-Armed Bandit agents. On more
bandwidth-constrained systems, µMama shows higher gains. In
addition, µMama’s RL-based design allows it to easily adapt to
alternate optimization targets. For example, fairness is often crit-
ical in multi-tenant and latency-sensitive systems, such as cloud
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environments. When provided with a reward that incorporates
fairness, µMama improves the system’s harmonic mean speedup
by 10.4% compared to uncoordinated Micro-Armed Bandits. By
simply changing the reward, µMama can be used to explore the
fairness/throughput tradeoff of a system, increasing its flexibility
and applicability.

Overall, the main contributions of the paper are:

• An analysis of issues faced by RL prefetchers in multicore
systems and how they relate to known problems in MARL.
• The design of µMama: a flexible system architecture for
coordinating contentious Micro-Armed Bandit agents.
• An evaluation of µMama on a range of system configurations,
compared to multiple state-of-the-art prefetchers.
• A demonstration of µMama’s configurability and how it can
be modified for different targets, enabling flexible designs.

2 Background

In this section, we provide background on online RL. We discuss
issues that arise when multiple online learners share a single envi-
ronment.

2.1 Online Reinforcement Learning

RL [6, 55] is a type of ML where an agent takes various actions and
receives rewards as feedback for those actions. The agent attempts
to learn the correct actions to play in order to maximize its rewards.
In online RL, the agent is thrust into its operating environment
without prior training. An online RL agent must strike a balance
between exploring its action space (to learn more about the impact
of its actions on the environment) and exploiting what it has already
learned (to maximize its rewards). There are numerous approaches
to online RL, such as Q-learning [57], SARSA [43, 55], and policy
gradient methods [55].

Some of the simplest approaches to RL are Multi-Armed Ban-
dit algorithms [32]. In a Multi-Armed Bandit model, the agent’s
rewards are assumed to depend (maybe stochastically) only on
the action (or “arm”) that the agent chooses to excercise—not on
some underlying system state. Therefore, an action that previously
resulted in a high reward is expected to provide a high reward
if chosen again. This does not fit every problem, but prior work
has identified temporal homogeneity [17] present in multiple CPU
microarchitectural problems that makes them amenable to such a
model.

A popular Multi-Armed Bandit algorithm is the Upper Con-
fidence Bound (UCB) algorithm. UCB begins with an initial ex-

ploration step, during which it plays each action once to acquire
initial reward estimates. After testing each arm once, UCB will
choose the action 𝑎𝑖 with the greatest value, which is its average
observed reward 𝑟𝑖 plus a bonus term to encourage the selection of
infrequently-used actions:

value (𝑎𝑖 ) = 𝑟𝑖 + 𝑐

√︄
ln𝑇
𝑛𝑖

(1)

The UCB algorithm only requires tracking an action’s average re-
ward, the number of times it has been used (𝑛𝑖 ), and the global
timestep (𝑇 ). The exploration/exploitation tradeoff is controlled by
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Figure 1: A general-sum game with two agents, where the

rewards for the actions taken by A and B are shown in a grid.

A’s reward is more sensitive to changes than B’s.

the hyperparameter 𝑐 . When one operates in time-varying envi-
ronments, the Discounted UCB (DUCB) algorithm is used, which
defines an additional parameter, 0 < 𝛾 < 1, which controls the
“forgetfulness” of the agent.

2.2 Multi-Agent RL and Games

Multi-Agent Reinforcement Learning (MARL) [2] is the extension
of RL that deals with multiple agents acting within a single envi-
ronment, and has deep ties to game theory [40]. In MARL, each
agent’s rewards depend on the actions of all agents (i.e., the joint
action), not just its own. The agents play a “game,” which may be
general-sum—meaning that changes to one agent’s reward are not
always exactly counterbalanced by changes to the others.

2.2.1 Non-Cooperative Agents & Nash Equilibria. In general-sum
games, the opportunity may arise for one agent to improve its own
reward, but at the cost of worsening another agent’s reward. In
multicore prefetching, this may occur because a private prefetcher
can adopt an aggressive policy, which boosts its core’s performance
but increases resource contention.

Consider a simplified two-player MARL game shown in Figure 1
(which is similar to the classic Prisoner’s Dilemma [40]). Each agent
can choose to adopt either a Friendly or an Aggressive policy. The
numbers in the grid are the rewards for the actions taken by Agent
A and Agent B. For example, if Agent A is Aggressive and Agent B
is Friendly, the rewards for Agent A and Agent B are 1.5 and 0.6,
respectively.

Choosing to be Aggressive will increase that agent’s reward, but
decrease the other’s. Due to each agent’s attempts to maximize its
own reward, two non-cooperating agents will each adopt the Ag-
gressive strategy, and wind up playing the {Aggressive, Aggressive}
joint action. This is called a Nash Equilibrium [2, 38]: neither agent
can unilaterally improve its reward by changing its own action. For
example, if Agent B decided to be Friendly, its own reward would
decrease from 0.7 to 0.6, so it will not do this. However, to maximize
the sum of the rewards, Agent B must choose to be Friendly.

Note that there is room for ambiguity in Figure 1: although
{Aggressive, Friendly} (top-right) provides the largest total reward,
{Friendly, Friendly} distributes the reward fairly between the agents
without giving up much of the total. The optimal strategy will
therefore depend on what we value when defining the system’s
“performance.” As we describe in Section 3.1, we discover similari-
ties between multicore RL prefetching and the game presented here:
individual agents prefer aggressive actions in multicore environ-
ments, where bandwidth is limited, even when it would be better
for the system if some of them behaved in a friendlier fashion.
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Figure 2: Prefetching policies chosen by four Micro-Armed Bandit agents in a four-core multicore running traces from SPEC

and Ligra, as a function of time. The policies are sorted from most aggressive (top of the Y axis) to least (bottom).

2.2.2 Cooperative Agents & Credit Assignment. One seemingly-
obvious “fix” for this kind of game is to provide every agent with
the same reward: for example, the sum of the two components. The
{Aggressive, Friendly} joint action would now provide a reward
of 2.1 to both and the {Aggressive, Aggressive} joint action would
provide 1.9. Now, the agents might converge to the right policy,
namely, {Aggressive, Friendly}.

However, if each agent is unaware of the other’s actions, this can
lead to an exacerbated credit-assignment problem [2, 51, 60]. When
Agent A chooses to be Aggressive, it might now see a reward of 1.9
(if B was Aggressive), and when Agent A chooses to be Friendly, it
might now see a reward of 2.0 (if B was Friendly). After observing
these rewards, Agent A may choose to be Friendly in the future,
despite the optimal joint action requiring Agent A to be Aggressive.
The problem is that Agent A did not properly assign credit for the
rewards that it saw: it assumed responsibility for the +0.1 difference
but, in reality, the reward was also impacted by the changing state
of Agent B.

With more agents and more actions available to each, the credit-
assignment problem worsens. Apparently obvious solutions often
lead to other difficulties—e.g., allowing only one agent to explore
at a time slows the learning process of all agents, and tracking
all possible joint actions quickly grows intractable, since the joint
action space scales exponentially with the number of agents.

2.2.3 Prior Theory. There has been much prior theoretical work
on general-sum and cooperative multi-agent bandit problems, both
with communication [8, 26, 36] and without [20, 21]. Other similar
problems, such combinatorial bandits, and hierarchical MARL more
generally, have also received attention [30–32, 39, 41]. Our ultimate
solution resembles some of the latter works, which are lightweight
enough to implement in hardware due to their simplicity.

2.3 Micro-Armed Bandit Prefetcher

The Micro-Armed Bandit prefetcher [17] (“Bandit”) uses a DUCB
algorithm to control an ensemble of prefetchers in a private L2
cache. Bandit controls a stride, stream, and next-line prefetcher. At
each timestep, Bandit chooses from a set of actions specifying the
degree of each prefetcher. For example, a possible action can be to
disable the next-line and stride prefetchers, and set the streamer to
degree 4. As the reward, Bandit is given the core’s normalized IPC,
which it attempts to maximize.
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Figure 3: Normalized number of prefetches issued in four

settings as the number of cores increases.

3 Motivation

To motivate the contribution of this paper, we now show that com-
peting Bandit agents tend to converge to sub-optimal joint actions
in multicores. We also consider a shared-reward solution and show
that it quickly runs into the credit-assignment problem, limiting
its utility. Finally, we comment on the challenges of using a single
agent like Micro-Armed Bandit for “system-wide” control.

The experiments in this section use the setup of Section 5, with
the Bandit prefetchers in the private L2 caches.

3.1 Competition Between Prefetchers

In multicore systems, each core and its associated prefetchers com-
pete for resources such as memory bandwidth. This competition
influences the learning process of RL prefetchers like Bandit that
aim to maximize their own core’s IPC.

Figure 2 shows the prefetching policies chosen by four Bandit
agents in a 4-core multicore as a function of time. The workload is
traces from SPEC06 [52], SPEC17 [53], and the Ligra graph process-
ing suite [48]. The policies are sorted from most aggressive at the
top of the Y axis to least aggressive at the bottom (see Section 5).

In this experiment, each agent prefers one policy over all others,
but still regularly explores, as can be clearly seen by the noisy
pattern. The agent in Core 0 turns its prefetcher off (Policy 0) for
most of the time; Cores 1 and 2, which are running two different
simpoints from 607.cactuBSSN_s, mostly use Policy 10, which is
moderately aggressive; and Core 3 mostly uses the most aggressive
policy (Policy 16). These configurations are similar to the actions
that Bandit chooses in a single-core environment. However, in the
multicore setting, better configurations exist. For example, enabling
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Figure 4: Prefetching policies chosen on the workload mix shown in Figure 2 when using a shared reward.

only the next-line prefetcher (Policy 1) for all cores on this workload
reduces the demand on the memory system and results in 5% better
system performance.

Figure 3 hints at the more general nature of this problem. The
figure shows the normalized number of prefetches issued in four
settings as the number of cores increases. The settings have the
following prefetchers in L2: Bandit [17], Pythia [5], Bingo [3], and
no prefetcher (no L2 pref). They all have a stride prefetcher in L1.
The curves are normalized to the number of prefetches with 1 core.

We see that Bandit, unlike the other prefetchers, becomes more

aggressive as the core count increases. In an eight-core system, the
agents collectively issue almost ten times the number of prefetches
as in the single core system, which is 25% more than the 8x we
might expect. Although this is not a problem per se, it indicates that
the multicore environment is affecting Bandit’s learning process,
and rather than dialing back the prefetchers, the results are policies
that increase memory contention. Just as in Section 2.2, agents are
unlikely to reduce their prefetcher’s agressiveness when not forced
to cooperate, since any core that deviates from this equilibrium
policy will likely incur a slowdown.

3.2 The Credit Assignment Problem

As discussed in Section 2.2, a naïve approach to solving the problem
of competition involves providing a shared reward (e.g., system
performance) to these agents. This should encourage the agents to
adopt actions that help the whole system, and not just themselves.
However, such a scheme faces the credit assignment problem.

This problem occurs when agents can no longer distinguish the
effects of their own actions from the effects of others’. A shared
reward is suboptimal for an agent because it is affected by the noise
introduced by the other agents. We described an example of this
problem in Section 2.2.2. In here, we describe another example.
Specifically, for a prefetch-sensitive workload, the actions thatmost

affect a particular core’s performance are often those of its own
prefetcher. However, when a system is experiencing only light or
moderate resource contention, a shared reward will just dilute the
signal most relevant to the agent: the performance of the local core.

This can be seen in Figure 4, which shows the same workload as
in Figure 2, but this time providing a shared reward to the agents.
Although it is hard to see, Cores 0 and 2 manage to converge mostly
to Policies 4 and 10, respectively, but the other two agents are
unable to converge to a stable policy. On average, across the same
52 4-core workloads evaluated in Section 6, simply supplying a
shared reward does not result in any meaningful performance gain.

3.3 A Very Large Search Space

To sidestep the credit assignment problem, one could treat the
multicore system as a single ensemble of prefetchers and use only
one Micro-Armed Bandit to optimize over their combined action
spaces. Such an agent could directly optimize for system-wide
performance without ever mis-assigning credit.

However, the action space for that agent would be far too large.
In the 4-core system we consider, where each L2 prefetcher has
17 possible configurations, there are a total of 174 = 83,521 joint
actions available to the system. Just the initial exploration step of a
DUCB system-level agent might take almost an second to complete,
which is too long to exploit temporal homogeneity [17]. With 8
cores, this initial exploration step may take almost a day, and with
16, several millennia. A table for storing so many rewards would
also be too costly.

In practice, even if we cannot directly iterate over this joint
action space, we can still track a limited number of joint actions to
try to distinguish the good from the bad, and use this to coordinate
the prefetchers.

4 µMama System Design

To solve the problems just outlined, we introduce the µMama sys-
tem, which builds upon Micro-Armed Bandit to provide intelli-
gent system-aware prefetching. This section describes how µMama
searches for high-performing joint actions with the assistance of
a distributed set of local Bandit agents. µMama leverages these
local agents to gain insights into promising joint actions, while
guiding them towards cooperative policies. We provide a high-level
algorithmic description and discuss the design of this system.

4.1 Local Exploration, Global Exploitation

µMama takes a balanced approach, utilizing both greedy local
agents and system-level joint action tracking. In a similar fash-
ion as prior theoretical work [39], locally-greedy Bandit agents in
each private prefetcher explore promising actions, while a system-
level agent monitors and overrides these agents to dictate system
policy when it believes this will improve performance. In most
cases, these local agents receive their local core’s IPC as reward,
whereas the system-level µMama supervisor is rewarded with an
estimation of the system performance.

Algorithm 1 provides a high-level description of the µMama
action selection algorithm. At each timestep, an RL µMama “ar-
biter” agent (Line 2) determines whether to dictate a known joint
action to the 𝑛 private prefetchers or to allow the 𝑛 local agents to
independently select actions. If dictating, µMama greedily selects
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Algorithm 1 The µMama action selection algorithm

1: procedure GetSystemAction
2: 𝑠𝑒𝑙𝑒𝑐𝑡 𝐽𝑜𝑖𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛 ← Arbiter() ⊲ Choose local or joint
3: if 𝑠𝑒𝑙𝑒𝑐𝑡 𝐽𝑜𝑖𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛 then

4: 𝑎 ← argmax𝑘
{
𝑟
𝑠𝑦𝑠

𝑘

}
⊲ JAV cache lookup

5: else

6: 𝑎 ← {LocalAction0, . . . , LocalAction𝑛−1}

the previously-observed joint action that has the highest average
reward (Line 4). Instead, if µMama’s arbiter decides to allow the 𝑛
local agents to choose their own actions, they do so based on their
own local value estimates (Line 6).

This algorithm can be broken down into three distinct RL agent
roles. First, there are the local agents located in each private L2,
which operate almost exactly as in Bandit [17]. Second, there is a
system-level agent that tracks high-performing joint actions and
always chooses to exploit its best joint action. We call this agent the
Joint Action Value (JAV) cache, which will be described Section 4.2.
Finally, the arbiter agent controls which of the other two agents
dictates system policy at each time step: either the local agents
independently choose the actions to take, or a joint action from the
JAV cache is used. The arbiter also strongly resembles Bandit [17],
but it only has these two possible actions.

In this system, the local agents are primarily intended to support
exploration of new joint actions. Rather than randomly sampling
or iterating over the joint action space, local agents can help to
focus the system’s exploration on joint actions that have the poten-
tial to improve their core’s performance. However, in some cases,
increasing one core’s performance may not matter much to the
system (e.g., other cores may have more potential for speedup), but
its prefetcher could still create interference. In this case, µMama
rewards this local agent based on the system performance, rather
than on its local core’s performance (more details in Section 4.2.4).

A distinct advantage of using RL with performance-based re-
wards is flexibility. By changing the reward calculation, the same
hardware can support different tradeoffs. As an example, increasing
throughput in multicore systems often involves treating cores un-
fairly by prioritizing those with the greatest potential for speedup—
and treating cores fairly often results in reduced throughput. To
target a different point in this tradeoff, one only needs to change
µMama’s reward calculation, opening up the opportunity for flexi-
ble run-time configuration. We exploit this idea later.

4.2 Microarchitecture of µMama

We now present the detailed design of µMama, which coordinates
local prefetcher controllers to optimize for system-level perfor-
mance. In order to do this, µMama has to first be able to quantify
the system’s performance and determine which joint actions are
high-performing. Once this is done, µMama can direct the local
agents according to a system-level policy. Additionally, µMama
should provide feedback to key local prefetchers in order to encour-
age them to explore policies that benefit the whole system. In this
section, we present the details of how µMama accomplishes each of
these to maximize system throughput, and then examine extending
the design to other performance targets.

4.2.1 Computing System-Level Rewards. To optimize for system-
level performance, µMama needs to be able to quantify it. A com-
monmulticore throughputmetric is theWeighted Speedup (WS) [12–
14, 49], defined in Equation 2. First, we compute the speedup of a
core running on the system with its L2 prefetcher (opt,MP for opti-
mized multiprocessor) relative to when it is running alone on the
system without L2 prefetcher (base,SP for baseline single processor).
Then, we take the sum of all these individual speedups.

𝑊𝑆 =

𝑛−1∑︁
𝑖=0

𝑆𝑖 =

𝑛−1∑︁
𝑖=0

IPCopt,MP
𝑖

IPCbase,SP
𝑖

(2)

To provide an accurate reward, we must estimate𝑊𝑆 at run-
time. The numerator, IPCopt,MP

𝑖
, is the IPC of core 𝑖 in the optimized

system, which can be measured by µMama. However, the denomi-
nator is more difficult to measure: we must know how the workload
behaves when it runs on a core alone on the system.

One way to estimate IPCbase,SP
𝑖

is to profile each workload alone
on the system, either offline or by periodically interrupting the
others, and provide these profiles to µMama. Alternatively, one
could heuristically approximate IPCbase,SP

𝑖
in a way that can be

computed at runtime. µMama adopts this latter approach, which
does not require software support (see Section 6.6 for an evaluation
of the former).

To estimate𝑊𝑆 , first note that the speedup terms in Equation 2
are equivalent to the right-hand side of Equation 3.

𝑆𝑖 =
IPCopt,MP

𝑖

IPCbase,SP
𝑖

=
IPCbase,MP

𝑖

IPCbase,SP
𝑖︸       ︷︷       ︸
𝑆MP
𝑖

×
IPCopt,MP

𝑖

IPCbase,MP
𝑖︸       ︷︷       ︸
𝑆
opt
𝑖

(3)

IPCbase,MP
𝑖

is the IPC of Workload 𝑖 when run in the presence of
the other applications in the multicore, without prefetching. Then,
𝑆MP
𝑖

is Workload 𝑖’s “speedup” (more typically, slowdown) caused
by the multicore environment, and 𝑆opt

𝑖
is the speedup provided by

L2 prefetching. The local agents already track something similar to
𝑆
opt
𝑖

(i.e., their normalized rewards, 𝑟𝑖 ).
Consider now how to estimate 𝑆MP

𝑖
. We expect that workloads

that miss more in their L2 will suffer a greater slowdown from the
multicore environment. Let 𝛿𝑖 be the number of accesses issued by
Workload 𝑖 that would have missed the L2, per instruction executed,

in the absence of an L2 prefetcher. The expression 𝑆MP
𝑖∑𝑛−1

𝑗=0 𝑆MP
𝑗

is the

fraction of the multicore-induced speedup contributed byWorkload
𝑖 . The same workload contributes a fraction of total L2 misses
equal to 𝛿𝑖∑𝑛−1

𝑗=0 𝛿 𝑗
, and

(
1 − 𝛿𝑖∑𝑛−1

𝑗=0 𝛿 𝑗

)
is the fraction of total L2 misses

contributed by all the workloads except 𝑖 . Therefore, we estimate

that 𝑆MP
𝑖∑𝑛−1

𝑗=0 𝑆MP
𝑗

≈ 𝛼

(
1 − 𝛿𝑖∑𝑛−1

𝑗=0 𝛿 𝑗

)
for some 𝛼 . Re-arranging,

𝑆MP
𝑖 ≈ 𝛼

©­«
𝑛−1∑︁
𝑗=0

𝑆MP
𝑗

ª®¬
(
1 − 𝛿𝑖∑𝑛−1

𝑗=0 𝛿 𝑗

)
(4)

Because𝑊𝑆 is a homogeneous function (i.e.,𝑊𝑆 (𝑐×𝑆0, 𝑐×𝑆1) =
𝑐×𝑊𝑆 (𝑆0, 𝑆1)), we canmaximize it while ignoring themultiplicative
terms common to all cores (in particular, 𝛼×∑𝑛−1

𝑗=0 𝑆MP
𝑗

). This yields
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taken from the JAV cache or actions taken by local agents.

the following approximation for 𝑆𝑖 , which we use to estimate𝑊𝑆

at runtime.

𝑆𝑖 ≈ 𝑆𝑖 =

(
1 − 𝛿𝑖∑𝑛−1

𝑗=0 𝛿 𝑗

)
︸             ︷︷             ︸

𝑆MP
𝑖

× 𝑟𝑖︸︷︷︸
𝑆
opt
𝑖

(5)

4.2.2 Disambiguating Credit Assignment with the JAV Cache. Now
that we have a global reward signal, µMama must associate joint
actions with their expected rewards. This is done with the central
µMama Unit, which communicates with the private-cache Bandit
agents over an on-chip network, as shown in Figure 5. The µMama
Unit contains both the µMama Arbiter and the Joint Action-Value
(JAV) cache, shown in Figure 6.

The µMama Arbiter is a DUCB Multi-Armed Bandit agent, simi-
lar to the local agents, but with only two possible actions (shown
in the figure as the two inputs of a multiplexer): use a joint action
from the JAV or use actions chosen by local agents. To make its
decision, the µMama Arbiter uses two tables, namely, Arbit nTable
and Arbit rTable. Arbit nTable tracks the number of times each of
the arbiter’s possible actions (local or joint) has been taken; Arbit
rTable tracks the average reward for each of the two actions. The
arbiter is queried once every 𝑇𝑎𝑟𝑏𝑖𝑡 timesteps. For example, if it
chooses to allow the local agents to operate freely, they explore
for 𝑇𝑎𝑟𝑏𝑖𝑡 time steps before the arbiter is queried again. Otherwise,
µMama enforces joint actions from the JAV cache for 𝑇𝑎𝑟𝑏𝑖𝑡 steps.

The JAV cache is a hardware cache where each entry corresponds
to a previously applied joint action. An entry has three fields: the
joint action description (aField), the number of times the joint action
has been played (nField), and the average reward for the joint action
(rField). The table is indexed by the joint action. A simple design
would implement the cache in a fully-associative manner.

...

rField

...

aField

  
...

nField

Select

(a) Selecting the highest-reward joint action for play.

...

rField

...

aField

  
...

nField

Evict

(b) Selecting the lowest-reward joint action for eviction.

Figure 7: Two operations supported by the JAV cache.

The JAV cache supports two operations. First, it can look up
the action with the highest rField (Figure 7a), which µMama uses
whenever the arbiter overrides the local agents. Second, it can insert
a new action or update an existing action’s nField and rField with
new system-level rewards. When the JAV cache updates its tables
at the end of each timestep, it may need to evict an entry to make
room for a new joint action entry. It will always choose to evict the
worst-performing action, based on its rField, as shown in Figure 7b.
The JAV cache does not evict any entry if the incoming action
appears less rewarding than every currently-tracked action.

As Section 4.3 discusses, µMama is very tolerant of the latencies
involved in querying and updating the JAV cache. This tolerance
allows the JAV cache to be implemented as a single-ported structure,
with max/min operations implemented by sequentially scanning
over the entries, rather than requiring costly reduction trees.

It is best to keep the size of the JAV cache relatively modest
since, unlike local agents, the JAV cache does not explore lower-
performing actions. Therefore, during program phase changes, a
large JAV cache may take a long time to stop picking actions that
were highly rewarding in the past, but are not anymore.

4.2.3 Managing the Complexity of the JAV Cache. In our evaluation,
we use a small, low-overhead JAV cache. However, other systems
may need larger JAV caches, especially if the agent step sizes are
small or their action spaces are large. This could lead to high area
and energy requirements if we make the JAV cache fully associative
or if action selection involves comparisons between every entry’s
rField (Figure 7a). Moreover, since the aField size scales linearly
with core count, lookup operations required for updating the JAV
cache may also grow more expensive in large systems. To manage
this, two simple changes can be made.

First, the JAV cache can be made set-associative. The sets would
be indexed by a hashes of the aField, and each entry would still be
tagged by the aField. To minimize collisions, these hashes should
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mix bits from throughout the aField so that the set depends on
the policies of all the cores. The tradeoffs involved in choosing
the associativity of the JAV cache are the same as for any cache:
decreasing the associativity leads to more evictions of data, but
reduces the resource requirements. It also reduces the number of
comparisons required for eviction (Figure 7b).

Second, the number of comparisons required for action selection
(Figure 7a) can be reduced. By maintaining a copy of the best-
performing joint action and its reward, we eliminate the need to
compare every entry. When the JAV cache updates the reward of
an entry, it must only check to see whether the updated entry now
surpasses the previous best, and if so, update the copy.

4.2.4 Providing Global Rewards to Local Agents. As discussed pre-
viously, shared rewards often exacerbate the credit-assignment
problem, especially since local actions usually affect the local core
more than the rest of the system. However, we observe that, often,
some workloads in a system contribute much less to𝑊𝑆 than oth-
ers. Providing these “low importance” cores with global rewards
can prove useful: rather than maximizing their own performance,
which has negligible impact on the system as a whole, they can
focus on reducing the negative impacts that their policies might
have on the rest of the system.

To see how this works, consider two cores in a larger system,
where Core 0 is slowed down a lot by multicore contention, but
Core 1 is not (i.e., 𝑆MP

0 ≪ 𝑆MP
1 ). Since a core’s total contribution

to𝑊𝑆 is determined by 𝑆MP
𝑖
× 𝑆

opt
𝑖

, it may be profitable reduce
prefetching aggressiveness in Core 0 (potentially decreasing 𝑆opt0 )
and free up enough resources for Core 1 to prefetch aggressively
(increasing 𝑆opt1 ). This tradeoff becomes more promising the greater
the difference between 𝑆MP

0 and 𝑆MP
1 is.

With this in mind, if 𝑆MP
𝑖

(Equation 5) is below some small thresh-
old 𝜃global, µMamawill provide to agent 𝑖 the system-level (“global”)
reward, rather than a local reward. This approach is expected be
more helpful than having agent 𝑖 optimize its own performance,
since its own performance is expected to be poor anyways.

4.2.5 Extending to Other Performance Metrics. So far, we have used
WS as our system-level performance metric. A commonly-used
alternative is the Harmonic Mean Speedup (HS):

𝐻𝑆 =
𝑛∑𝑛−1

𝑖=0
1
𝑆𝑖

(6)

where 𝑆𝑖 is the same as in Equation 2. Unlike𝑊𝑆 , 𝐻𝑆 emphasizes
fairness: there are quickly-diminishing returns for improving the
performance of only one core. To obtain high 𝐻𝑆 , speedups need to
be balanced between cores. Thanks to µMama’s design, it is trivial
to change the system reward calculation for 𝐻𝑆 : µMama just uses
the same approximations of 𝑆𝑖 as in Equation 5.

With 𝐻𝑆 , determining which local agents receive system-level
rewards (because it is relatively unimportant to increase their core’s
performance, as discussed in Section 4.2.4) is only slightly more
complex. To see why, recall that, when using𝑊𝑆 , µMama focuses
on estimating 𝑆MP

𝑖
, since the slope of𝑊𝑆 with respect to 𝑆

opt
𝑖

is
𝑆MP
𝑖

, and thus a small value of 𝑆MP
𝑖

limits the importance of 𝑆opt
𝑖

.
Similarly, when using 𝐻𝑆 , µMama focuses on estimating 𝜕𝐻𝑆

𝜕𝑆
opt
𝑖

,

which is equal to 𝑆𝑀𝑃
𝑖

𝑛 ×
(
𝐻𝑆
𝑆𝑖

)2
. Hence, µMama compares this

value to the threshold 𝜃global and, if it is less than 𝜃global, provides
the system-level reward to local agent 𝑖 . Further, since 𝜃global is an
arbitrary constant, with the appropriate choice of 𝜃global, it is only

necessary to compare it to 𝑆𝑀𝑃
𝑖
×

(
𝐻𝑆
𝑆𝑖

)2
.

In practice, the desired system-level performance metric may
not be known at design time: the same chips may be sold to both
high-throughput supercomputing facilities and cloud datacenters,
which may have different requirements. For this reason, designers
can include many possible optimization targets, each with different
tradeoffs, to be selected at installation- or run-time.

4.3 Communication and Latency

We now consider the communication requirements of µMama and
how this communication is scheduled to make the system highly
tolerant of network and computation latencies.

4.3.1 Need for Communication in 𝜇Mama. Micro-Armed Bandit [17]
defines its timesteps in terms of the number of demand accesses to
the L2, rather than as a fixed cycle count. This is so that all types of
workloads, fast or slow, can observe the effects of their prefetching
policy before the agent must determine the next step’s policy.

However, when coordinating several agents, it is beneficial to
have a common timestep. To accomplish this, in our design, when
a local agent reaches its threshold number of L2 demand accesses
(step), it sends a message to µMama to mark itself as ready to ad-
vance. Once the majority of local agents do so (or once one local
agent reaches 𝑘𝑠𝑡𝑒𝑝 times such threshold), µMama broadcasts in-
structions to begin the next timestep. Thus, advancing one timestep
requires one first round-trip to the µMama unit for most local
agents.

Additionally, each agent must send the µMama unit its local 𝑟𝑖
and 𝛿𝑖 (Section 4.2.1) at the end of each timestep so that µMama
can compute system-level rewards. 𝛿𝑖 is estimated by recording
the number of useful prefetches and the number of L2 misses. The
µMama unit updates its tables based on this information and sends
the local agents instructions for the next timestep, including any
global rewards. This incurs another round-trip per local agent and
timestep.

4.3.2 Hiding Latency: Planning One Step Ahead. These two com-
munication round-trips, along with the computations involved in
updating the µMama unit’s state, would create extra latency in
each timestep. This would not stall any part of the system, since the
prefetchers would continue to operate according to the policies of
the previous step. However, this could cause additional variations
in timestep sizes, which should be avoided.

To minimize this effect, µMama hides most of this communi-
cation and computation by planning one timestep ahead. Figure 8
illustrates this approach. After enough “finished” messages for
timestep 𝑛 arrive 1○, µMama immediately broadcasts instructions
to start timestep 𝑛 + 1 2○. Local agents then select their actions
and begin timestep 𝑛 + 1, while in parallel sending their 𝑟𝑖 and 𝛿𝑖
from step 𝑛 to µMama 3○. µMama then computes the system-level
reward, updates its JAV cache and arbiter, queries both as appropri-
ate, and determines the system’s policy for timestep 𝑛 + 2. µMama
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Figure 8: The µMama unit communicates regularly with the

local agents to synchronize timesteps and coordinate actions.

sends this system policy information for timestep 𝑛 + 2, as well as
any necessary global rewards for timestep 𝑛, to the local agents
4○, who will update their tables and buffer the system policy for
timestep 𝑛 + 2 until the latter begins.

Let Agent 𝑖 be the one that completes the majority and ends
timestep 𝑛. Using the above schedule, the “critical path” between
Agent 𝑖 becoming ready for the next timestep and the system be-
ginning step 𝑛 + 1 consists only of Agent 𝑖 sending a message to
the µMama unit 1○, followed by a broadcast from the µMama unit
to all local agents 2○. All latencies involved in sending individual
updates between the agents and the µMama unit, as well as the
latency of updating and querying the JAV cache and arbiter, are
completely hidden behind the ongoing timestep.

4.4 Design overheads

Along with additional communication, µMama introduces minimal
storage and logic requirements.

4.4.1 Storage and Logic Overheads. The JAV cache is the central
storage structure of the µMama unit. This is a small fully-associative
structure. The tag (i.e., the aField bits) size grows linearly with the
number of cores and logarithmically with the number of actions
available to the local prefetcher agents. The reward estimates (rField
bits) and counters (nField bits) are double-precision floats in our
experiments. In our evaluation, we use a 2-entry JAV cache. For our
8-core system with 17 local arms, the aField has 40 bits. Overall, the
JAV cache has a total size of 336 bits, or 42 bytes, counting both tags
and data. This is only about 2% the size of the combined storage
used by the local Bandit agents in this system.

Following the methodology in [17], we estimate the area of a
larger JAV cache using CACTI [4], and the area of the floating-point
logic from the numbers in [44]. We then scale to 10nm using the
approach in [54]. In a 10nm 40-core system with a larger JAV cache
of 64 entries, the µMama unit would only use an area of 0.00712
𝑚𝑚2. Relative to a server-class 40-core Intel Icelake [9], which has
a total die area of 628𝑚𝑚2, this is an area overhead of about 0.001%.

Table 1: Some prefetcher parameters used in the evaluation.

Prefetcher Parameters
Bandit [17] 𝑐 = 0.01; 𝛾 = 0.9995; step = 800 accesses; with

64-entry stride/streamer prefetchers
µMama step = 800 accesses, 𝜃global = 1 − 1.4

𝑛 , 𝑘𝑠𝑡𝑒𝑝 = 5
Local Agents: 𝑐 = 0.01; 𝛾 = 0.995
Arbiter: 𝑐 = 0.1; 𝛾 = 0.995; 𝑇𝑎𝑟𝑏𝑖𝑡 = 5
JAV Cache: 2 entries; 𝛾 = 0.999

4.4.2 Communication Overheads. The µMama system requires reg-
ular communication between the local agents and the µMama unit,
as described in Section 4.3. However, this communication is very
light: each agent exchanges only 27 bytes of data with the µMama
unit during each timestep, and only 2 bytes during the “critical
path” highlighted in Figure 8. During our evaluation, the average
timestep length on an eight-core system is about 150,000 cycles,
or 38 μs. In a 40-core system with the same timestep length, this
would correspond to a total data rate of about 28 MB/s, or 710 kB/s
per prefetcher agent. Such a low data rate is inconsequential to
modern NoCs, which reach dozens of GB/s or more, even when
crossing chiplet boundaries [37]. Due to this low communication
overhead and µMama’s latency tolerance, µMama can reuse any
existing NoC with a suitable interface.

A typical timestep of 38 μs also means that network latencies
should not significantly affect µMama. The latency between a local
agent and the µMama unit in a machine should be similar to the
core-to-core latency in that machine, which range from dozens
to hundreds of nanoseconds in modern systems [15]. This is no
more than a few percent of a timestep. If a system has much larger
latencies than this, then the system architect may increase the
timestep size, at the cost of making µMama’s learning process
somewhat slower.

5 Methodology

5.1 Architecture

We evaluate µMama using a recent version1 of Champsim [18],
which is a trace-based microarchitectural simulator. We port Micro-
Armed Bandit [17], Bingo [3], and Pythia [5] to this version of
Champsim. For each prefetcher, we consider several hyperparam-
eters and choose the set that performs best for a single core. We
also provide some comparisons using a stride prefetcher shipped
by Champsim. All of these prefetchers are placed at the L2, with an
additional low-degree stride prefetcher located in the L1D.

Some key parameters for Bandit and µMama are shown in Ta-
ble 1. Since many of µMama’s hyperparameters are similar to those
found in Bandit [17], we perform only a limited parameter space
search. Specifically, we set step to 800 (as in Bandit) and restrict
the exploration of 𝑐 and 𝛾 to values within about one order of mag-
nitude of the values known to work with Bandit. We determine
the µMama-specific parameters (i.e., 𝑇𝑎𝑟𝑏𝑖𝑡 , 𝜃global, 𝑘𝑠𝑡𝑒𝑝 , and JAV
size) by scanning within ranges determined to be feasible. We use
25 four-core workloads to guide these explorations. The final pa-
rameters have certain intuitiveness. For example, µMama’s local

1Commit 9fc6b604ce56f9e0f39a8fe3ed9f1e8eab4435a9
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Table 2: Bandit arms used in our experiments.

Arm ID 0 1 2 3 4 5 6 7 8
Next-Line On? ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Stride Degree 0 0 0 0 2 0 2 0 0
Streamer Deg. 0 0 2 3 2 4 3 5 6

Arm ID 9 10 11 12 13 14 15 16
Next-Line On? ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Stride Degree 0 0 4 4 8 0 8 15
Streamer Deg. 7 6 4 5 6 15 7 15

Table 3: Default system used in the evaluation.

Component Configuration
CPU 1, 2, 4, or 8 CPUs; 4GHz; ROB=352; LQ=192;

SQ=114; Fetch Buffer: 64; Fetch Width: 16; De-
code Width: 6; Dispatch Width: 6; Exec Width:
10; Retire Width: 10; BP: hashed_perceptron

L1I Cache 32 KB (64 sets x 8 ways); 4 cycle hit; no
prefetcher; 64B line

L1D Cache 48 KB (64 sets x 12 ways); 5 cycle hit; 24-entry
ip_stride prefetcher; 64B line

L2 Cache 1MB (1024 sets x 16 ways); 10 cycle hit;
experiment-specific prefetcher; 64B line

Shared LLC 6 MB (8,192 sets x 12 ways); 40 cycle hit; no
prefetcher; 64B line

DRAM 2400 MT/s; 1 channel; 4 ranks; 8 banks; 65536
rows; 1024 columns

agents and arbiter use lower 𝛾 values than Bandit, since their roles
are to explore changing environments, but the JAV cache uses a
higher 𝛾 to better remember high-performing joint-actions. We
use a wider selection of arms for Bandit than in the original work,
shown ordered by total degree in Table 2.

We model the latency of µMama’s “critical path” identified in
Figure 8 as a constant 200 cycles, which is similar to the same-
socket core-to-core round-trip latencies in recent server-class pro-
cessors [15]. The shared-reward threshold 𝜃global is parameterized
on the number of active cores, 𝑛, and is the same for𝑊𝑆 and 𝐻𝑆 .

Unless otherwise specified, experiments use the system configu-
ration presented in Table 3. With 4 cores active, this configuration
provides a per-core memory bandwidth of 4.8 GB/s, and with 8
cores active, it provides 2.4GB/s per core. These are similar to the
per-core memory bandwidths supported by Sapphire Rapids [22]
and Sierra Forest [50] systems, respectively.

In our simulations, we use a brief warmup of 1 million instruc-
tions per core, and simulate until each core executes at least 250
million more. We report statistics from these latter 250 million.
If any core reaches the end of its trace before the simulation is
finished, the trace is restarted.

5.2 Workloads

We use a collection of prefetch-sensitive traces for our evaluation,
taken from the SPECCPU 2006 [52], SPECCPU 2017 [53], Ligra [48],
and PARSEC 2.1 [7] benchmark suites. These traces were released
by the 3rd Data Prefetching Championship [1] and Pythia [5]. We
identify “prefetch-sensitive” traces as those that observe a greater
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Figure 9: Average Weighted Speedup of four prefetchers, nor-

malized to that of uncoordinated Micro-Armed Bandits.

than 10% performance change when run alone with one of our
prefetchers, compared to without L2-prefetching. Out of 324 tested
traces, 148 meet this criteria, comprised of 50% from Ligra, 22% from
SPEC06, 20% from SPEC17, and 8% from PARSEC. This set includes
scientific programs, datacenter workloads, compilers, and more.
Such workloads may be commonly co-located on high-throughput
or multi-tenant systems such as supercomputers or cloud nodes.
We randomly sample from traces to generate 52 multicore workload
mixes for 4- and 8-core systems.

5.3 Evaluation Metrics

Our evaluation involves an analysis of both throughput and fairness,
each of which is important in its own context [14]. To measure
system throughput, we use the Weighted Speedup (WS) [12–14, 49],
introduced in Equation 2. In our fairness evaluation, we use the Har-
monic Mean Speedup (HS) from Equation 6. HS is commonly used
to jointly quantify speedup and fairness [12–14]. In addition, we
also report the unfairness of the various prefetcher configurations,
which quantifies the maximum degree to which one workload is
prioritized over another in a given workload mix. We define the
unfairness as in [12].

𝑈𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
𝑀𝐴𝑋 {𝑆0, 𝑆1, . . . , 𝑆𝑁−1}
𝑀𝐼𝑁 {𝑆0, 𝑆1, . . . , 𝑆𝑁−1}

(7)

6 Evaluation

In this section, we evaluate µMama. First, we show that µMama
achieves higher performance than Micro-Armed Bandit on multi-
core systems with a per-core memory bandwidth similar to modern
server-class processors. Next, we show that µMama tends to use
less aggressive prefetcher configurations than Bandit, and leads
to a fairer system. Finally, we show that µMama’s advantage over
Bandit increases when the system has limited memory bandwidth.

6.1 Throughput

Figure 9 compares the average normalized Weighted Speedup of
four prefetchers, compared to the performance of uncoordinated
Bandit prefetchers, when 1, 4, or 8 cores are active. When 4 or 8
cores are active, µMama shows speedups of 1.9% and 2.1%, respec-
tively, over the system using the independent Bandit agents. The
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(a) Weighted Speedups of µMama normalized to Bandit (4-core).
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(b) Weighted Speedups of µMama normalized to Bandit (8-core).
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(c) Harmonic Speedups of µMama normalized to Bandit (4-core).
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(d) Harmonic Speedups of µMama normalized to Bandit (8-core).

Figure 10: Weighted and Harmonic Speedups of µMama normalized to Bandit when using 4 cores and 8 active cores.
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Figure 11: Weighted Speedups of µMama and Pythia normal-

ized to Bandit for different values of the memory bandwidth.

other prefetchers generally underperform Bandit, with the excep-
tion of Pythia in the single-core case, which performs comparably,
and Bingo in the 8-core case, probably due to Bingo’s relatively
conservative prefetching and high accuracy.

It can be shown that the total number of prefetches issued to
all L2 caches when using µMama is about 23.9% lower than when
using uncoordinated Bandits in the four-core case, and about 15.5%
lower in the eight-core case. This reduction in prefetches in µMama
brings µMama in line with the other prefetchers shown in Figure 3.
Yet, µMama does not lower prefetcher aggressiveness across the
board: on average, about 1.5 agents increase their prefetching ag-
gressiveness in the 4-core workloads, and 3.5 do so in the eight-core
workloads. This suggests that µMama successfully increases overall
throughput by choosing to prioritize some cores over others.

Figures 10a and 10b show µMama’s speedups normalized to
Bandit for each trace mix used in the 4- and 8-core experiments,
respectively. µMama shows a performance improvement in the
majority of workload mixes in both cases, with multiple workloads
observing speedups above 10%.

6.2 Scaling Memory Bandwidth

Along with our baseline system, described in Table 3, which uses
a single channel of memory resembling DDR4-2400, we evaluate

µMama on a system with one channel of DDR4-1866, and on sys-
tems with two channels of DDR4-1866 or DDR4-2400. Figure 11
shows how the Weighted Speedup of µMama and Pythia normal-
ized to independent Bandit agents varies with memory bandwidth
when using 4 cores (4C) and 8 cores (8C). The figure shows that
µMama provides the greatest advantage over Bandit when memory
bandwidth is low. This is expected since, with low bandwidth, the
uncoordinated prefetchers in Bandit create high contention. In the
most bandwidth-constrained system, µMama shows a speedup of
2.56% with eight cores. In contrast, Pythia’s relative speedup can
decrease with tighter memory bandwidth, as can be seen for the
8-core curve.

6.3 Understanding Workload Characteristics

As Figures 10a and 10b show, some workloads benefit from µMama
more than others. The four-coreworkloadwith traces from SPEC06’s
429.mcf & 435.gromacs, SPEC17’s 649.fotonik3d_s, and Ligra’s PageR-
ankDelta slows by 4%, but the workload with (different) traces from
435.gromacs & 649.fotonik3d_s, along with Ligra’s BC & Bellman-
Ford, speeds up by 13.2%. Of the eight traces in these two workloads,
seven are present in workloads with speedups and also in work-
loads with slowdowns. To understand why, we need a system-level
view.

When the workloads benefiting most from µMama are run with-
out an L2 prefetcher, they tend to either have a relatively low aver-
age number of L2 misses per thousand instructions (𝜇L2-MPKI), a rel-
atively high variance (𝜎2L2-MPKI), or both. The high variance allows
µMama to identify “low-importance” cores to receive a system-
level reward more often (Section 4.2.4). The relatively low average
L2-MPKI tends to mean that conservative prefetcher configurations
can still achieve good performance: indeed, these workloads tend
to see larger reductions in prefetcher aggressiveness than the oth-
ers when using µMama. If we restrict our analysis to the 56% of
workloads for which 𝜇L2-MPKI − 𝜎L2-MPKI < 2.5 MPKI, µMama’s
speedup is 2.7% on four cores and 3.4% on eight.

One characteristic that is common to all the workloads that we
consider is that they are sensitive to prefetching. This sensitiv-
ity is what drives competition between Bandits (Section 3.1), and
managing this competition is an important reason for µMama’s
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Figure 12: Prefetching policies chosen on the workload mix shown in Figure 2 when using the throughput-oriented µMama.

The gray-shaded parts of the plot are where the arbiter enforces a joint action from the JAV cache.
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Figure 13: Prefetcher Unfairness and Harmonic Speedups

normalized to Bandit for different prefetchers.

speedup improvements. The non-sensitive workloads (defined us-
ing the criteria from Section 5.2), in addition to simply not being as
affected by prefetching policies, have less of a competition problem
for µMama to fix. For these workloads, µMama only delivers an
average speedup of 0.4% over Bandit for eight-core workloads.

6.4 µMama for Fairness

In user-facing or micro-service environments, fairness between
cores may be valued as much as, or more, than throughput [14]. In
this section, we evaluate how µMama can be used to improve the
fairness of the system as described in Section 4.2.5. Specifically, we
compare µMama, which uses WS, to µMama-Fair, which uses HS.
We also show how more precise tradeoffs can be made by chang-
ing the reward function. No hyperparameter beyond the reward
function is changed. Recall that Equation 7 defines Unfairness.

Figure 13a shows the Unfairness measure for several prefetchers.
We see that, in both 4- and 8-core workloads, µMama-Fair shows
a ≈30% reduction in Unfairness compared to Bandit. Figure 13b
shows that this translates into µMama-Fair’s 9.44% and 10.38%
higher harmonic speedup normalized to Bandit in the 4- and 8-core
workload mixes, respectively. Figure 13b also shows that µMama-
Fair has a significantly higher harmonic speedup compared to the
throughput-oriented µMama, which in turn achieved higher WS
than Bandit with a similar unfairness.
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Figure 14: Tradeoff between performance and fairness for

µMama designs with different reward functions and other

prefetchers.

Figures 10c and 10d show µMama-Fair’s harmonic speedups nor-
malized to Bandit for each trace mix used in the 4- and 8-core exper-
iments, respectively. µMama-Fair shows large harmonic speedups
in the majority of the workload mixes in both cases.

Yet the tradeoff between throughput and fairness does not end
with these two configurations. System engineers may want to fur-
ther tune the prefetching to get the best performance for their
particular application. With µMama, this means fine-tuning the
reward function. Specifically, we consider configurations that use
rewards equal to (1 − 𝛼) ·𝑊𝑆 + 𝛼 · 𝐻𝑆 , 𝛼 ∈ {0, 0.25, 0.50, 0.75, 1},
and we call these µMama-WS, µMama-25, µMama-50, µMama-75,
and µMama-HS. We also consider µMama-GM, a configuration that
uses the geometric mean of core speedups.

Figure 14 shows the tradeoff between performance and fairness
for these µMama designs and other prefetchers. In the figure, the Y
axis shows 1 minus the average Unfairness, so that higher numbers
are better. A perfectly fair system has a (1-Unfairness) value of
0. The X axis shows the absolute average Weighted Speedup. We
see that these µMama configurations together form a clear perfor-
mance frontier, allowing system designers the opportunity to easily
analyze the tradeoffs involved for their particular applications. On
the other hand, Bandit is non-Pareto-optimal. Although Pythia lies
on the Pareto frontier, µMama maintains more flexibility, as its
various configurations cover a wide swath of throughput/fairness
tradeoffs.

6.5 Arbiter Decisions

Figure 12 shows the prefetching policies chosen on the workload
mix shown in Figure 2 when using the throughput-oriented µMama.
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Figure 15: µMama’s sensitivity to its various components.

The gray-shaded sections of the trace show when the arbiter en-
forces a joint action from the JAV cache—as opposed to letting local
agents explore individually. We see that this workload primarily
uses actions from the JAV cache, with occasional breaks to allow the
local agents to explore other actions. In contrast to Bandit’s actions
on this same workload (Figure 2), µMama disables the streamer for
Cores 1 and 2, while decreasing the degrees of Core 3’s prefetchers.
It can be shown that the result is higher performance for Cores 1
and 2, similar performance for Core 0, and only slightly reduced
performance for Core 3. In total, the𝑊𝑆 improves by almost 10%
over Bandit for this workload.

Some workloads use the arbiter more than others but, on average,
the four-core workloads and eight-core workloads use actions from
the JAV cache 64% and 67% of the time, respectively.

6.6 Sensitivity to Design Components

µMama contains several important components, from the JAV cache
to heuristics used to estimate speedups. In this section, we evaluate
µMama’s sensitivity to several of these.

6.6.1 JAV and Global Rewards. The µMama algorithm consists of
two major components: the JAV cache and the global reward (GRW)
assignment to low-impact local prefetchers. Figure 15a shows how
each of these two components contributes to µMama’s improve-
ment in weighted speedup normalized to Bandit in an eight-core
system. We see that, alone, the global reward does not improve
performance much, while the JAV cache alone provides about 1.5%
uplift over Bandit. The two features combine synergistically, deliv-
ering a 2.1% improvement over Bandit.

6.6.2 Sensitivity to the JAV Cache Size. In our evaluation, we use a
JAV cache of size 2, which requires very few resources and quickly
adapts to phase changes in the workload thanks to rapid entry
eviction. Figure 15b shows µMama’s weighted speedup normalized
to Bandit on 4-core workloads for different JAV cache sizes. The
speedup degrades slightly as the JAV cache grows, probably due
to the additional time required to update reward estimates after
program phase changes. However, as the size of themulticore grows,
we expect that so too will the optimal JAV cache size.

6.6.3 Profile-Guided Reward Estimation. Equation 4 introduced an
estimate of 𝑆MP

𝑖
, the speedup (or slowdown) of a trace as it moves

from running on a core in an unloaded multicore to running on a
core in a multicore where all the other cores are busy. This estimate
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Figure 16:Weighted Speedups of µMama-Profiled normalized

to Bandit for 8 core.

is easy to compute, and using it as part of the reward function helps
to attain good performance. However, it is only approximate. To
show this, we computed the relative values of the 𝑆MP

𝑖
estimations

across cores, since these are the weights given to the observed
rewards (𝑟𝑖 ) of the different cores. Then, we compare these values
to their ground truth. We find that, for our eight-core experiments,
the Pearson correlation coefficient between these two is only 0.51.

A more accurate approach involves profiling the performance
of each trace alone in the unloaded multicore, and then providing
these profiled numbers to µMama at run-time. We call the resulting
system µMama-Profiled. Figure 15a shows the weighted speedup
normalized to Bandit for µMama-Profiled. We see that µMama-
Profiled achieves a 3% speedup over Bandit, which is 0.9% higher
than when using µMama with the estimated values of 𝑆MP

𝑖
.

Figure 16 shows µMama-Profiled’s weighted speedups normal-
ized to Bandit for each trace mix used in the 8-core experiments. We
see that, compared to µMama in Figure 10b, µMama-Profiled im-
proves the average Weighted Speedup. Further, relative to µMama,
µMama-Profiled reduces the number of workloads with slowdowns
over Bandit by 47%. This is because it eliminates cases where
µMama prioritizes the wrong cores. For data-center applications
that frequently run at large scale, this improvement may be worth
the cost of profiling [29]. However, for more general workloads,
this is probably less useful, given the up-front cost and software
involvement.

7 Future Work

In this work, we focused on a system of Bandit-based L2 prefetchers.
This scenario has been helpful for understanding the problems with
multiple RL agents. Other scenarios, such as systems with Bandit-
based L1 and L2 prefetchers, may require changes to µMama’s
design. If the two levels are controlled by separate agents, the JAV
will need to contain {L1 pref, L2 pref} pairs, instead of just the L2
actions, and the global timestep may need to be revised to account
for the different miss frequencies of the two levels. If, however, the
L1 and L2 prefetchers are jointly controlled by a single Bandit agent,
µMama’s design will hardly change.

µMama’s applicability to non-Bandit prefetchers depends on
their particular design. For example, Pythia [5] and RLOP [19] use
RL to determine offsets instead of degrees. Without any control
knob for aggressiveness, µMama may not be directly applicable. On
the other hand, it should be easier to apply µMama to designs such
as RL-CoPref [58] which, like Bandit [17], use RL to control the
degrees of a set of prefetchers. The larger state space of RL-CoPref
would still require some modifications: the actions stored in the JAV
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cache may need to represent limits on prefetcher aggressiveness,
rather than a particular prefetcher configuration as done here.

Other non-RL prefetchers can also be managed via µMama in the
same way as the next-line, stream, and stride prefetchers are used
in this work. In systems that already incorporate control knobs for
prefetcher aggressiveness (e.g., ArmNeoverse V2 [33]), a design like
µMama can be used to control these knobs in a way that accounts
for the characteristics of different workloads in the system.

8 Related Work

Prior works have also investigated the use of reinforcement learn-
ing in multicore environments. Jain et al. [24] use hierarchical
Q-Learning to optimize system EDP by controlling core DVFS, un-
core DVFS, and LLC partitioning. In addition to the differences in
optimization targets and action spaces, their learning algorithm
restricts itself to only changing one variable at a time, which can
slow down the learning process substantially in large systems. Jalili
and Erez [25] use a deep learning approach that combines a system-
level shared network frontend with per-prefetcher “branches.” Their
deep network requires offline training, and its network is fixed at
runtime, limiting adaptability in unseen environments.

More broadly, there has been a wide range of works targeting
the problem of managing resources in multicore systems, espe-
cially in regards to prefetching. Ebrahimi et al. [13] used a global
throttling mechanism to reduce the bandwidth used by inaccurate
local prefetchers and, in a later work [12], showed how prioritizing
certain demand accesses over others can help to overcome per-
formance and fairness issues caused by over-eager prefetching in
multicores. The second of these works is orthogonal to ours, and
the former is largely heuristic. Although well-reasoned, they do
not directly optimize for application performance like µMama’s
reward function does, meaning they must be reformulated if a dif-
ferent optimization target is required. Similarly, Arm’s Neoverse V2
processors limit the number of outstanding transactions when the
network reports high load, but do not directly account for the trade-
off between local and system-level performance [33, 34]. AREP [28]
and Limoncello [23] both use runtime monitors to determine when
to enable or disable hardware prefetchers, and provide software
prefetching to compensate for lost hardware prefetching. Both of
these works require that workloads be compiled with particular
toolchains to ensure compatibility with the software prefetching.
This limits their utility on public systems, where users may be
unwilling to change their development processes.

9 Conclusion

We observed that, in multicore systems, uncoordinated RL prefetch-
ers motivated by their own cores’ performance will naturally con-
verge to contentious, and often globally-suboptimal, prefetching
policies. Based on this finding, we proposed µMama, a light-weight
supervisor of distributed multi-armed bandit agents that learns and
applies globally-optimized prefetching actions. µMama’s simple RL
design allows it to be used to target a range of system-level objec-
tives, simplifying the process of exploring performance tradeoffs.

We evaluated µMama’s effectiveness on multicore systems with
various memory bandwidths. In an 8-core multicore, the prefetch-
ing policies learned by µMama outperform those of independently-
operating agents by an average of 2.1%when optimizing for through-
put, and by an average of 10.4% when optimizing for fairness.
µMama performs better in systems that are more bandwidth con-
strained, as well as when profiles of the workloads are provided. Fi-
nally, we showed the flexibility of µMama under alternative reward
functions. We conclude that µMama is a significant improvement
over Bandit for prefetching in multicore systems.
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